Implementation of Fuzzy Tsukamoto in the Design of Nutrient Control and Monitoring System for Aquaponics Based on the Internet of Things

##plugins.themes.academic_pro.article.main##

Abd Muqsith Hidayat
Faisal Akib
Faisal Faisal

Abstract

Aquaponic is an important aquaculture technique because it is easy to apply, saves water, and allows the integration of plant roots to absorb waste nitrogen from fish waste as nutrients. However, temperature, pH, Total Dissolved Solids (TDS), and water level greatly affect plant growth. This research aims to design a control system to monitor plant nutrition and development in real-time using temperature, pH, TDS, and ultrasonic sensors and apply Tsukamoto Fuzzy model to overcome uncertainty in decision making based on sensor data. This research uses a quantitative approach with a design and development method. Data were collected through direct observation, interviews with aquaponic farmers, and related literature studies. The designed system successfully fulfills the need to control and monitor nutrients in aquaponic systems effectively. The system utilizes an ESP8266 module and various sensors (pH, TDS/PPM, temperature, and water level) to monitor water conditions in real-time and send the data to Firebase, which is then displayed on the application interface. Automatic control allows for quick adjustments to changing environmental conditions, ensuring an optimal environment for plant growth.

##plugins.themes.academic_pro.article.details##

How to Cite
[1]
A. M. Hidayat, F. . Akib, and F. Faisal, “Implementation of Fuzzy Tsukamoto in the Design of Nutrient Control and Monitoring System for Aquaponics Based on the Internet of Things”, Jagti, vol. 4, no. 2, pp. 29-36, Aug. 2024.

References

  1. N. Rahayu, W. S. Utami, M. M. Razabi, and A. Uno, “RANCANG BANGUN SISTEM KONTROL DAN PEMANTAUAN AQUAPONIC BERBASIS IoT PADA KELURAHAN KUTAJAYA,” vol. 4, no. 2, pp. 192–201, 2018.
  2. N. G. Mohd Shafik Mohd Samsi, Mohd Zuhaili Kamal Basir, “SIGNIFICANT USE OF THE AQUAPONICS SYSTEM FROM AN ISLAMIC PERSPECTIVE,” vol. 28, no. 2, 2022.
  3. E. Wardani and U. L. Karimah, “Pengoptimalan Kja Dengan Inovasi Aquaponik Untukmeningkatkan Produksi Ikan Air Tawar Dan Sayuran Organikpadalahan Perairan Pasca Tambang Timah Kobatin Desaperlang Bangka Tengah,” J. Abdimas Bina Bangsa, vol. 3, no. 1, pp. 145–152, 2022.
  4. Sotyohadi, Wahyu Surya Dewa, and I Komang Somawirata, “Perancangan Pengatur Kandungan TDS dan PH pada Larutan Nutrisi Hidroponik Menggunakan Metode Fuzzy Logic,” ALINIER J. Artif. Intell. Appl., vol. 1, no. 1, pp. 33–43, 2020, doi: 10.36040/alinier.v1i1.2520.
  5. M. A. Nahdi, T. Y. Putro, and Y. Sudarsa, “IoT Based Hydroponic Plant Nutrient Monitoring and Control System,” Pros. Ind. Res., pp. 201–207, 2019, [Online]. Available: https://jurnal.polban.ac.id/proceeding/article/view/1390
  6. A. Setiawan and U. P. Pengaraian, LOGIKA FUZZY Dengan M A T L A B ( Contoh Kasus Penelitian Penyakit Bayi dengan Fuzzy Tsukamoto ), no. July. 2018.
  7. K. N. Silaban, “Penerapan Metode Tsukamoto (Logika Fuzzy) Dalam Sistem Pendukung Keputusan Untuk Menentukan Besarnya Gaji Karyawan Pada Hotel Grand Antares,” J. Informatics, Electr. Electron. …, vol. 1, no. 1, pp. 20–26, 2021, [Online]. Available: https://djournals.com/jieee/article/view/56%0Ahttps://djournals.com/jieee/article/download/56/168
  8. A. Setiawan, B. Yanto, and K. Yasdomi, Logika Fuzzy Dengan Matlab. 2018.
  9. D. Handayani and M. Salam, “Aplikasi Sistem Informasi Simpan Pinjam Koperasi Berbasis Website Menggunakan Metode Waterfall,” vol. 3, no. 5, pp. 425–434, 2023.