Implementation of Large Language Models in Sentiment Analysis for Presidential Candidate Elections
##plugins.themes.academic_pro.article.main##
Abstract
The presidential candidate election in Indonesia is a hot topic on social media, especially Twitter. This study analyzes public sentiment regarding the 2024 presidential candidate election using the IndoBERT model, which is specifically designed for the Indonesian language, on a dataset of 8,442 tweets. This research follows the CRISP-DM methodology, which includes business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The data was collected through crawling with keywords related to the election, followed by preprocessing and manual labeling before being processed by the model. The results show that IndoBERT achieved an accuracy of 98%, with precision, recall, and F1-score also at 98% at the 10th epoch. Batch size evaluation indicated that a batch size of 4 yielded the best performance. This model is effective in classifying sentiment related to the 2024 presidential candidate election and serves as a useful tool for understanding public opinion.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- F. Cindy Ambarsari, A. Fadillah Gizka, N. Zerlinda, N. Sasqya Mega Putri, M. Eka Putri Giyanti, dan D. Puspa Arum, “Bahasa Indonesia dalam Komunikasi Politik: Variasi Gaya Bahasa Calon Presiden dalam Debat Pertama Pilpres 2024,” Innov. J. Soc. Sci. Res., vol. 4, hal. 5702–5720, 2024, [Daring]. Tersedia pada: https://j-innovative.org/index.php/Innovative/article/view/9989/6928
- P. A. M. Prasetyo dan A. Hermawan, “Analisis sentimen twitter terhadap pemilihan presiden menggunakan algoritma naïve bayes,” J. Inform. Teknol., vol. 4, no. 2, hal. 224–233, 2023, doi: 10.37373/infotech.v4i2.863.
- M. W. Ward, “Twitter User Statistics 2024,” Search Logistics, 2024. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
- D. Darwis, N. Siskawati, dan Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. Tekno Kompak, vol. 15, no. 1, hal. 131–145, 2021, doi: https://doi.org/10.33365/jtk.v15i1.744.
- F. Halim, Liliana, dan K. Gunadi, “Ringkasan Ekstraktif Otomatis pada Berita Berbahasa Indonesia Menggunakan Metode BERT,” J. Infra, vol. 10, no. 1, 2022.
- A. Simanjuntak, R. Lumbantoruan, K. Sianipar, R. Gultom, M. Simaremare, dan S. Situmeang, “Studi dan Analisis Hyperparameter Tuning IndoBERT Dalam Pendeteksian Berita Palsu,” J. Nas. Tek. ELEKTRO DAN Teknol. Inf., vol. 13, hal. 60–67, 2024.
- L. F. Simanjuntak, R. Mahendra, dan E. Yulianti, “We Know You Are Living in Bali: Location Prediction of Twitter Users Using BERT Language Model,” Big Data Cogn. Comput., vol. 6, no. 3, 2022, doi: 10.3390/bdcc6030077.
- N. Doede, P. Merkel, M. Kriwall, M. Stonis, dan B. A. Behrens, “Implementation of an intelligent process monitoring system for screw presses using the CRISP-DM standard,” Prod. Eng., no. 0123456789, 2024, doi: 10.1007/s11740-024-01298-8.