Sentiment Analysis of User Comments on the Moba Game Lokapala on Google Play Store Using Support Vector Machine Algorithm
##plugins.themes.academic_pro.article.main##
Abstract
In this modern era, games are heavily influenced by technological advancements. The development of increasingly complex and captivating games can be played online by millions of players worldwide. The gaming industry in Indonesia has shown significant progress with the emergence of various games from local developers, one of which is Lokapala, a Multiplayer Online Battle Arena (MOBA) game that highlights the uniqueness of Indonesian culture. However, this game has received various responses from users on Google Play Store. This study aims to analyze user sentiment towards the Lokapala game on Google Play Store using the Support Vector Machine (SVM) algorithm. User review data were collected and pre-processed through stages such as data cleaning, tokenization, stopwords removal, and stemming. Subsequently, features were extracted using the TF-IDF method. The analysis results show that SVM with Radial Basis Function (RBF) kernel successfully classified user sentiment with an accuracy of 90% from a total of 300 reviews analyzed. This process not only helps in understanding overall user perceptions but also identifies specific aspects of the game that receive appreciation or criticism. Thus, game developers can use the results of this analysis to improve quality and user satisfaction, and strengthen the game's competitiveness in markets.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- A. F. Panjalu, S. Alam, dan M. I. Sulistyo, “Moba Game Review Sentiment Analysis Using Support Vector Machine Algorithm” JIKO (Jurnal Informatika dan Komputer), vol. 6, no. 2, Agu 2023, doi: 10.33387/jiko.v6i2.6388.
- A. Mulachela, K. Rizki, dan Y. A. Wahyudin, “Analisis Perkembangan Industri Game di Indonesia Melalui Pendekatan Rantai Nilai Global (Global Value Chain)” 2020.
- J. Effendi dan M. J. Ramadhan, Analisis Cluster Aplikasi pada Google play Store dengan Menggunakan Metode K-Mean. 2019.
- R. Kusnadi, Y. Yusuf, A. Andriantony, R. Ardian Yaputra, dan M. Caintan, “Analisis Sentimen Terhadap Game Genshin Impact Menggunakan Bert” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 6, no. 2, hlm. 122–129, Jul 2021, doi: 10.36341/rabit.v6i2.1765.
- M. Riefky dan W. Pramesti, “Sentiment Analysis of Southeast Asian Games (SEA Games) in Philippines 2019 Based on Opinion of Internet User of Social Media Twitter with K-Nearest Neighbor and Support Vector Machine Support Vector Machine” vol. 17, no. 1, hlm. 26–41, 2020, doi: 10.20956/jmsk.v%vi%i.9947.
- L. Hickman, S. Thapa, L. Tay, M. Cao, dan P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations” Organ Res Methods, vol. 25, no. 1, hlm. 114–146, Jan 2022, doi: 10.1177/1094428120971683.
- Z. Efendi, “Text Mining Classification Sebagai Rekomendasi Dosen Pembimbing Tugas Akhir Program Studi Sistem Informasi” 2020.
- B. R. Aditya, J. T. No, T. Buah, dan B. Bandung, “Penggunaan Web Crawler Untuk Menghimpun Tweets dengan Metode Pre-Processing Text Mining” Jurnal Infotel, vol. 7, no. 2, 2019, [Daring]. Tersedia pada: http://situs.com
- U. Rofiqoh, R. Setya Perdana, dan M. A. Fauzi, “Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features” 2019. [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id
- A. F. Yogananti, B. C. Pratama, dan A. Akrom, “Kolaborasi Teori Nielsen dan System Usability Scale (SUS) terhadap Usability Game Lokapala” 2022.