Implementation of K-Means Clustering Algorithm in Food Sales (Case Study: Ayam Betutu at Warung Wardana)
##plugins.themes.academic_pro.article.main##
Abstract
Ayam Betutu Warung Wardana is one of
the small food and beverage businesses which is in great demand to relax or to do work. To maximize
this business, managers must know the needs of customers who have visited, therefore they can
improve services according to what is needed. Besides that, there are problems that often occur,
namely problems regarding the menu that has the most potential to be improved and the menu that is
most in demand by consumers. From the problems that have been described above, this study applies
the K-means algorithm clustering method to determine consumer interest in a food and beverage
menu at Ayam Betutu Warung Wardana. In this study, the authors used a framework based on the
Cross Industry Standard Process for Data Mining (CRISP-DM) method. This study produced the best
two clusters with the Silhoutte and DBI validation methods. Testing using the Silhoutte Coefficient
shows a value of 0.44 and it is the best value close to the Davies Bouldin Index (DBI) showing the
value with the smallest ratio at 0.9030707. This is good because the ratio is close to zero, the better
the K-Means grouping.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Aji, Farell Apuilino Iman Seno,etal.“PENERAPAN METODE CLUSTERING PADA ANALISIS REALISASI PENDAPATAN ASLI DAERAH DENGAN ALGORITMA K-MEANS.” JATI (Jurnal MahasiswaTeknikInformatika),vol. 5,no.2,21Oct.2021,pp.443451, ejournal.itn.ac.id/index.php/jati/article/view/37 41,(https://doi.org/10.36040/jati.v5i2.3741). Accessed 13 Feb. 2023.
- Poltak Sianturi, et al. “Analisis Data Mining Menggunakan Algoritma K- Means Dalam Mengklasterkan Menu Makan Potensial Di Cafe Minum Kopi.” Jurnal Cyber Tech, vol. 3, no. 8, 2020, pp. 1412–1419 (ojs.trigunadharma.ac.id/index.php/jct/article/view/4657). Accessed 13 Feb. 2023.
- Badruttamam, Ahmad, et al. “PENERAPAN ANALISIS KLASTER K- MODES DENGAN VALIDASI DAVIES BOULDIN INDEX DALAM MENENTUKAN KARAKTERISTIK KANAL YOUTUBE DI INDONESIA (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade).” Jurnal Gaussian, vol. 9, no. 3, 30 Aug. 2020, pp. 263–272, (ejournal3.undip.ac.id/index.php/gaussian/article/view/28907,https://doi.org/1 0.1471 0/j.gauss.9.3.263-272). Accessed 13 Feb. 2023.
- Hidayati, Rahmatina, et al. “Analisis Silhouette Coefficient Pada 6 Perhitungan Jarak K-Means Clustering.” Techno.com, vol. 20, no. 2, 19 May 2021, pp. 186– 197, (https://doi.org/10.33633/tc.v20i2.4556). Accessed 24 Nov. 2021.
- Permana, Inggih, and Febi Nur Salisah. “Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation: The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm.” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), vol. 2, no. 1, 31 Mar. 2022, pp. 67–72, (journal.irpi.or.id/index.php/ijirse/article/view/311),https://doi.org/10.57152/i jirse.v2i1.311. Accessed 13 Feb. 2023.
- Puteri, Suci Rahma. “Analisis Visualisasi Data Kecamatan Kertapati Menggunakan Tableau Public.” JUPITER (Jurnal Penelitian Ilmu Dan Teknik Komputer), vol. 14, no. 2-b, 2022, pp. 366– 373. jurnal.polsri.ac.id/index.php/jupiter/article/view/5141/2197. Accessed 20