IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS TO DETERMINE STUDENT ELIGIBILITY IN GETTING JOB

##plugins.themes.academic_pro.article.main##

Azizah
Ayu
Azizah
Hastuti
Darmatasia

Abstract

Job recruitment selection is one of the processes carried out by agencies or companies to determine whether a person is eligible for a certain job position or not. The selection process is often carried out in a subjective manner so that it can be detrimental to companies or job applicants. In the process of determining a person's eligibility to be accepted or get a particular job, a company usually has set certain criteria. In addition, a company also often holds regular employee recruitment. This study aims to implement one of the machine learning algorithms, namely an Artificial Neural Network to build a model that can assist companies in predicting a person's eligibility for employment. The model is built with reference to certain criteria data that has been set by the company such as educational history, work experience, and capabilities. The best accuracy result of 91.18% is obtained from a model built using a learning rate parameter of 0.1 and the number of hidden layers is 10.

##plugins.themes.academic_pro.article.details##

How to Cite
[1]
A. S. Azizah Salsabila, A. A. . Zainal, A. S. Azizah Salsabila, H. Hastuti, and Darmatasia, “IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS TO DETERMINE STUDENT ELIGIBILITY IN GETTING JOB”, Jagti, vol. 3, no. 1, pp. 25-30, Feb. 2023.

References

  1. F. Ayu, “Implementasi Jaringan Saraf Tiruan Untuk Menentukan Kelayakan Proposal Tugas Akhir,” It J. Res. Dev., vol. 3, no. 2, pp. 44–53, 2019, doi: 10.25299/itjrd.2019.vol3(2).2271.
  2. H. Wasiati, D. Wijayanti, J. Sistem Informasi, S. AKAKOM Yogyakarta Jl Raya Janti, and K. Yogyakarta, “Sistem Pendukung Keputusan Penentuan Kelayakan Calon Tenaga Kerja Indonesia Menggunakan Metode Naive Bayes (Studi Kasus: Di P.T. Karyatama Mitra Sejati Yogyakarta),” IJNS-Indonesian J. Netw. Secur., vol. 3, no. 2, pp. 2354–6654, 2014.
  3. B. SETYAJI, “Sistem Pendukung Keputusan Penentuan Kelayakan Tenaga Kerja Menggunakan Metode Naive Bayes Classification.”
  4. D. S. Saputra, M. U. Putri, and S. D. Putra, “Prediksi kelulusan Informatika Palcomtech untuk Lolos Tes Calon Pegawai Negeri Sipil Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation.” STMIK Palcomtech, 2020.
  5. A. Asgar and Z. Abidin, “Penerapan Artificial Neural Networks pada Pengenalan Tanda Tangan.”
  6. L. Yulianti, “Implementasi Jaringan Syaraf Tiruan Dalam Sistem Pendukung Keputusan (SPK) Untuk Memilih Perguruan Tinggi,” Media Infotama, vol. 9, no. 2, pp. 45–63, 2018.