CLUSTERING ANALYSIS FOR CREDIT CARD USER SEGMENTATION USING K-MEANS ALGORITHM AND PRINCIPAL COMPONENT ANALYSIS

##plugins.themes.academic_pro.article.main##

Muhammad Nur Akbar
Azizah Salsabila
Aldi Perdana Asri
Muhammad Syawir

Abstract

Customer segmentation is a process used by companies to group customers based on common characteristics. The goal is to understand customer needs and preferences better so that companies can provide products and services that match customer needs. One way to segment customers is to use clustering algorithms, such as k-means. This algorithm groups data into adjacent clusters with randomly selected centroids. In the case of credit card customer segmentation, the k-means algorithm can be used to group customers based on characteristics such as number of transactions, amount of payments, and credit history. Thus, companies can better understand the needs and preferences of credit card customers and determine more effective marketing strategies. The advantages of the k-means algorithm and the clustering method are that the developed models can help companies determine more effective marketing strategies, easy-to-use algorithms with fast computation time and accurate results, and the PCA algorithm is also used to reduce dimensions and makes data visualization easier. Based on the test results and analysis of credit card customer data, the performance of the k-means algorithm is considered relatively good for segmentation with the number of clusters = 3 and the Davies Bouldin value = -0.778.

##plugins.themes.academic_pro.article.details##

How to Cite
[1]
M. N. Akbar, Azizah Salsabila, Aldi Perdana Asri, and Muhammad Syawir, “CLUSTERING ANALYSIS FOR CREDIT CARD USER SEGMENTATION USING K-MEANS ALGORITHM AND PRINCIPAL COMPONENT ANALYSIS”, Jagti, vol. 3, no. 1, pp. 16-24, Feb. 2023.

References

  1. A. Nur Khormarudin, “Teknik Data Mining: Algoritma K-Means Clustering,” J. Ilmu Komput., pp. 1–12, 2016, [Online]. Available: https://ilmukomputer.org/category/datamining/
  2. C. Zai, “Implementasi Data Mining Sebagai Pengolahan Data,” Portal Data, vol. 2, no. 3, pp. 1–12, 2022.
  3. W. A. Wahyuni and S. Saepudin, “Penerapan Data Mining Clustering Untuk Mengelompokkan Berbagai Jenis Merk Mesin Cuci,” Semin. Nas. Sist. …, pp. 306–313, 2021, [Online]. Available: https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/35%0Ahttps://sismatik.nusaputra.ac.id/index.php/sismatik/article/download/35/31
  4. T. Saepurohman and E. Putro, B, “Analisis Principal Component Analysis (PCA) Untuk Mereduksi Faktor-Faktor yang Mempengaruhi Kualitas Kulit Kikil Sapi,” Pros. Semin. Konf. Nas. IDEC, no. 2008, p. C01.1-C01.10, 2019, [Online]. Available: https://idec.ft.uns.ac.id/prosiding2019
  5. Aprilla Dennis, “Belajar Data Mining dengan RapidMiner,” Innov. Knowl. Manag. Bus. Glob. Theory Pract. Vols 1 2, vol. 5, no. 4, pp. 1–5, 2013, [Online]. Available: http://esjournals.org/journaloftechnology/archive/vol1no6/vol1no6_6.pdf%5Cnhttp://www.airccse.org/journal/nsa/5413nsa02.pdf
  6. Azevedo, A. and Santos, M.F. (2008) KDD, SEMMA, and CRISP-DM: A Parallel Overview. Proceedings of the IADIS European Conference Data Mining, Amsterdam, 2426 July 2008, 182-185.
  7. Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5, 13-22.
  8. Permatadevi, M. A., Hendrawan, R. A., & Hafidz, I., 2013. Karakteristik Pelanggan Telepon Kabel Menggunakan Clustering SOM dan K-Means untuk Mengurangi Kesalahan Klasifikasi Pelanggan Perusahaan Telekomunikasi. Jurnal Teknik Pomits Vol. 1, No. 1 Hal. 1-6.
  9. Hilmi, M., N., 2015. Pemetaan Preferensi Mahasiswa Baru dalam Memilih Jurusan Menggunakan Artificial Neural Network (ANN) dengan Algoritma Self Organizing Maps (SOM). Jurnal Gaussian Vol. 4, No. 1: Hal. 53-60.