Sentiment Analysis of Maxim Application Reviews on Google Play Store Using Support Vector Machine (SVM)

##plugins.themes.academic_pro.article.main##

Muhammad Nur Akbar
Nur Hasanahlmar'iyah Rusydi
M. Hasrul H.
Nurul Shaumi Ramadhanti
Erfiana

Abstract

Before selecting and installing applications on the Google Play Store, users often read reviews of other users. This makes user review analysis very attractive for app owners to make future decisions. One of them is the Maxim application, a new online transportation application that provides different services from similar applications. This study aims to analyze user reviews of the maxim application on the Google Play Store using sentiment analysis. The research data is taken from the Google Play Store website, while the data taken is in the form of a review text. This user review analysis uses the Support Vector Machine (SVM) method producing an accuracy of 79%.

##plugins.themes.academic_pro.article.details##

How to Cite
[1]
M. N. Akbar, N. H. Rusydi, M. H. . H., N. S. Ramadhanti, and Erfiana, “Sentiment Analysis of Maxim Application Reviews on Google Play Store Using Support Vector Machine (SVM)”, Jagti, vol. 2, no. 2, pp. 9-16, Aug. 2022.

References

  1. APJI, “Hasil Survey Profil Internet Indonesia 2022,” Apji.or.Od, no. June, 2022, [Online]. Available: apji.or.id.
  2. R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.
  3. T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural language processing,” Proc. 2nd Int. Conf. Knowl. Capture, K-CAP 2003, no. March, pp. 70–77, 2003, DOI: 10.1145/945645.945658.
  4. H. Nurrun Muchammad Shiddieqy, S. Paulus Insap, and W. Wing Wahyu, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. March, pp. 57–64, 2016.
  5. B. Liu, “Sentiment analysis and opinion mining,” Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1– 167, 2012.
  6. K. Dave, S. Lawrence, and D. M. Pennock, “Mining the peanut gallery: Opinion extraction and semantic classification of product reviews,” in Proceedings of the 12th international conference on World Wide Web, 2003, pp. 519– 528.
  7. B. Santosa, “Data mining:Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu- Bisnis.Edisi Pertama.,” Data miningTeknik Pemanfaat. Data untuk Keperluan Bisnis. Yogyakarta Graha Ilmu- Bisnis.Edisi Pertama., vol. 33, no. 4, pp. 365–373, 2007.
  8. M. Rahardjo, “Metode pengumpulan data penelitian kualitatif,” 2011.
  9. A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of Sentimental Reviews Using Machine Learning Techniques,” Procedia Comput. Sci., vol. 57, pp. 821–829, 2015.
  10. C. Ramasubramanian and R. Ramya, “Effective Pre-Processing Activities in Text Mining using Improved Porter’s Stemming Algorithm,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 2, no. 12, pp. 4536–4538, 2013, [Online]. Available: www.ijarcce.com.
  11. S. Vijayarani, M. J. Ilamathi, and M. Nithya, “Preprocessing techniques for text mining-an overview,” Int. J. Comput. Sci. Commun. Networks, vol. 5, no. 1, pp. 7–16, 2015.
  12. J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural networks,” J. Big Data, vol. 7, no. 1, 2020, DOI: 10.1186/s40537-020- 00305-w.
  13. M. Manic, “Data mining,” Intell. Syst., 2016.
  14. A. E. Permanasari and I. Hidayah, “Seminar Nasional Teknologi Informasi dan Multimedia 2014 KOMPARASI KERNEL PADA ALGORITMA SUPPORT VECTORMACHINE STUDI KASUS KLASIFIKASI
  15. PENJURUSAN DI SMA SAVERIUS SRAGEN,” no. 1, pp. 7–10, 2014.
  16. J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 5, no. 6, pp. 1120– 1126, 2021.
  17. H. Harianto, A. Sunyoto, and S. Sudarmawan, “Optimasi Algoritma Naïve Bayes Classifier untuk Mendeteksi Anomaly dengan Univariate Fitur Selection,” Edumatic J. Pendidik. Inform., vol. 4, no. 2, pp. 40–49, 2020, doi: 10.29408/edumatic.v4i2.2433.
  18. N. Patil and D. M. U. Nemade, “Music Genre Classification Using Related papers Music Genre Classification Using MFCC, K- NN,” Int. J. Comput. Eng. Res. Trends, vol. 4, no. 2, pp. 43–47, 2017.